
Rapid and Reversible Migration of the Isothiocyanate Group around the Cyclopropene Ring

Galina A. Dushenko,*^a Igor' E. Mikhailov,^b Igor' V. Dorogan,^a Ruslan M. Minyaev,^a Nils Hakam,^c Adolf Zschunke^c and Vladimir I. Minkin^a

Rapid degenerate and non-degenerate intramolecular migrations of the isothiocyanate group around the cyclopropene ring have been studied by dynamic ¹H and ¹³C NMR spectral methods and semiempirical PM3 calculations.

Few examples are known of degenerate and non-degenerate shifts of substituents in the cyclopropene ring along its perimeter. Among these are rapid chlorine¹ and azido group shifts² occurring *via* a dissociation-recombination mechanism $(G_{90\,^{\circ}C}^{+} 13-15 \text{ kcal mol}^{-1})$, high-energy barrier trimethylsilyl group migration ($\sim 35 \text{ kcal mol}^{-1}$), slow 3,3 sigmatropic allyl⁴ and indenyl (27–35 kcal mol⁻¹), shifts as well as hetero-Cope rearrangement of S-(1,2,3-triphenylcyclopropenyl)-O-ethyldithiocarbonate (18.4 kcal mol⁻¹). Here we report on rapid degenerate and non-degenerate intramolecular isothiocyanate group migration around the cyclopropene ring in the corresponding derivatives of 1,2,3-triphenyl-1[‡] and 1-(4-methoxyphenyl)-2,3-diphenylcyclopropene 2.§

According to IR and ¹³C NMR spectral data the reaction of 1,2,3-triphenyl- and 1-(4-methoxyphenyl)-2,3-diphenyl-cyclopropene bromides with potassium rhodanide (0.2 h, 81 °C, MeCN) leads to the corresponding covalent isothiocyanate derivatives 1 and 2. IR spectra of these compounds in solid and in solution do not contain absorption bands in the 1400–1430 cm⁻¹ range characteristic of the cyclopropene cations, ⁸ whereas in the spectral region of 1990–2190 cm⁻¹ an intense, broad split absorption band appears relating to the –N=C=S valence vibration. ⁹ The ¹³C NMR (75.5 MHz) spectra of 1 (see Figure 1) and 2 at room temperature display

Figure 1 75.5 MHz 13 C NMR spectra of 3-isothiocyano-1,2,3-triphenylcyclopropene **1** in C₆D₆ solution at 25 °C (a), 35 °C (b), 49 °C (c) and 80 °C (d). The signals were assigned by use of monoresonance 13 C NMR spectra and APT methods. The solution signals have been removed from the spectra.

the signals at δ 131.26 (1, C₆D₆), 130.28 (1, CDCl₃), 128.67, 128.91 (2, CDCl₃, at +10 °C) ppm of the isothiocyanate quaternary carbons. ¹⁰ The ¹³C thiocyanate signals are known to be observed in the interval of 110–114 ppm. ¹⁰ The signal of the cyclopropene sp³ carbons in 1 and 2 are found at δ 47.09 (1, C₆D₆), 46.55 (1, CDCl₃) and 45.60, 47.75 (2, CDCl₃, 10 °C). Their downfield shift, as compared to other derivatives of cyclopropene, is due to the anisotropic influence of the –N=C=S group. ¹⁰ On raising the temperature the signals of 1a-c (Figure 1) and 2a-c broaden (10–40 °C) and coalesce (50–80 °C). No measurable dependence of the dynamic ¹H (300 MHz) and ¹³C (75.5 MHz) NMR spectral behaviour was observed when varying the concentration of the solutions in the range of 0.01–0.5 mol dm⁻³, which indicates the intramo-

lecular character of the rearrangements (1). From the line

^a Institute of Physical and Organic Chemistry, Rostov State University, 344104 Rostov-on-Don, Russian Federation. Fax: +7 863 228 5667

^b Rostov State Academy of Building, 344022 Rostov-on-Don, Russian Federation. Fax: +7 863 265 5731

^c Institute of Analytical Chemistry, Humbold University, D-10115 Berlin, Germany. Fax: +49 30 284 68343

 $^{^{\}dagger}$ 1 kcal = 4.184 J.

[‡] Characterization data for **1** [colourless crystals (from acetonitrile)], m.p. $141-142\,^{\circ}$ C (lit., 7 $138-140\,^{\circ}$ C), 1 H NMR (300 MHz, 25 $^{\circ}$ C), C₆D₆, δ 6.95–7.16 (9H, m, aromatic H), 7.39–7.44 (6H, m, aromatic H); CDCl₃, 7.39 (9H, br. m, aromatic H), 7.63 (6H, br. s, aromatic H), 13 C NMR (75.5 MHz, CDCl₃, 25 $^{\circ}$ C), δ_C, 46.55 (C-3), 114.10 (C-1,2), 124.91 (C-4,5), 125.00 (C-9), 127.12 (C-15), 128.81 (C-12), 129.14 (C-10,11), 129.90 (C-7,8), 129.94 (C-13,14), 130.28 (C-16), 139.32 (C-6). IR (Nujol) ν /cm⁻¹ 2190–1980 (N=C=S), 1840 (C₁₋₃-skeletal), 1610 (C=C), 1500, 1460, 1320, 1170, 1080, 1040, 970, 920. MS m/z 325 (21.9%) [C₃Ph₃NCS] $^+$ = [C₃Ph₃SCN] $^+$ = [M] $^+$.

[§] Characterization data for **2** [colourless crystals (from acetonitrile)], m.p. 128–130 °C, ¹H NMR (300 MHz, CDCl₃, 25 °C), δ 6.82–7.30 (8H, br. m, aromatic H), 7.38–7.53 (6H, br. m, aromatic H), 3.64 (3H, s, OMe). ¹³C NMR (75.5 MHz, CDCl₃, 10 °C), δ_c, 45.60, 47.75 (C_{sp3}, ring); 55.00, 55.32 (C, OMe); 115.16–132.50 (CH, aromatic rings); 117.51, 118.42, 119.27, 127.81, 128.90, 136.23, 140.30, 144.30, 158.90, 161.16 (C-quaternary of the cyclopropene and aromatic rings); 128.67, 128.91 (C, NCS). IR (Nujol), v/cm^{-1} , 2190–1990 (N=C=S), 1840 (C₁₋₃-skeletal), 1620, 1610 (C=C), 1410, 1300, 1180, 1020, 860. MS m/z 355 (18%) [C₃(4-MeOC₆H₄)Ph₂NCS]⁺ = [C₃(4-MeOC₆H₄)Ph₂SCN]⁺ = [M]⁺. Compound **2** gave satisfactory elemental analysis..

shape analysis of the 13 C NMR spectra in the temperature interval $10\text{--}80\,^{\circ}\text{C}$ the following kinetic parameters of the degenerate $\mathbf{1a}\rightleftharpoons\mathbf{1b}\rightleftharpoons\mathbf{1c}$ (C_6D_6 , G_{298}^{\pm} 15.6 kcal mol $^{-1}$, H^{\ddagger} 14.3 \pm 0.3 kcal mol $^{-1}$, S^{\ddagger} -4.4 \pm 0.4 e.u., k_{298} 21.9 s $^{-1}$; CDCl $_3$, G_{298}^{\pm} 14.5 kcal mol $^{-1}$, H^{\ddagger} 10.7 \pm 0.3 kcal mol $^{-1}$, S^{\ddagger} -12.8 \pm 0.4 e.u., k_{298} 139 s $^{-1}$), $\mathbf{2b}\rightarrow\mathbf{2c}$ (CDCl $_3$, G_{298}^{\pm} 14.7 kcal mol $^{-1}$, k_{298} 100 s $^{-1}$), and slightly non-degenerate $\mathbf{2a}\rightarrow\mathbf{2b}$ (CDCl $_3$, G_{298}^{\pm} 14.9 kcal mol $^{-1}$, k_{298} 70.9 s $^{-1}$) and $\mathbf{2b}\rightarrow\mathbf{2a}$ (CDCl $_3$, G_{298}^{\pm} 14.8 kcal mol $^{-1}$, k_{298} 83.2 s $^{-1}$) rearrangements have been calculated.

The migration of the isothiocyanate group over the cyclopropene ring may occur by three conceivable reaction paths: (i) 1,3 sigmatropic shift through the η^2 intermediate or transition state structure 3; (ii) 3,3-hetero-Cope rearrangement occurring through unstable thiocyanate derivatives 4; (iii) dissociation-recombination path with the formation of tightly-bound ion pair 5.

Obviously, the overall kinetics may be governed by a mixture of all these mechanisms as was found to be the case for migration of the azido group around the periphery of the cycloheptatriene ring.¹¹

In order to gain an insight into the role of the particular reaction pathways above, semiempirical PM3 calculations¹³ of reaction (1) for compound 1 were performed.

The calculations reveal two stable isomeric ground state thiocyanate $\bf 4a$ and isothiocyanate structures $\bf 1a$ (see Table 1 and Figure 2). The former isomer $\bf 4a$ is predicted to be 4.2 kcal mol⁻¹ less stable than $\bf 1a$ in the gas phase. The 1,3 shift reactions (2) and (3) occur through corresponding transition state (TS) η^2 -structures $\bf 3$ and $\bf 7$, the energy barriers to the migration in the gas phase being calculated as 47.2 and 31.4 kcal mol⁻¹, respectively. η^3 -Structures $\bf 8$ and $\bf 9$ correspond to the top (critical point of the rank two) of the hill on the potential energy surfaces.

The interconversion of the isomers 1a and 4a proceeds by their hetero-Cope rearrangement through the TS structure 6 with energy barriers in the gas phase of 45.2 and 49.4

Table 1 Heat of formation in the gas phase $(\Delta H_{\rm f}/{\rm kcal\ mol^{-1}})$, in benzene $(\Delta H_{\rm f}^{\rm s}/{\rm kcal\ mol^{-1}})$ and in chloroform $(\Delta H_{\rm f}^{\rm s}/{\rm kcal\ mol^{-1}})$, calculated for structures 1–9 by semiempirical PM3 methods.

Heat of formation	1	3	4	6	7	8	9
$\Delta H_{ m f}$	179.8	227.0	184.0	229.2	215.4	219.1	227.1
$\Delta H_{ m f}^{ m s1}$	175.8	203.9	179.0	225.7	207.4	207.9	201.1
$\Delta H_{\mathrm{f}}^{\mathrm{s}1}$ $\Delta H_{\mathrm{f}}^{\mathrm{s}2}$	173.3	192.2	175.9	223.8	203.2	202.6	189.2

kcal mol⁻¹ for migration of thiocyanate and isothiocyanate groups, respectively. When the effect of solvation was accounted for by use of the polarizable continuum model approach, 14 η^3 -structures 8 and 9 which model tight ion pairs $C_3Ph_3^+\cdots NCS^-$ become lower in energy than the η^2 -structures 7 and 3. This trend indicates that an increase in polarity of the solution may lead to rearrangement through a dissociation-recombination mechanism. Energy barriers of 15.9 and 26.7 kcal mol⁻¹ were calculated for isothiocyanate and thiocyanate group random shifts in chloroform solution, respectively. On the contrary, no significant changes in the magnitude of the energy barrier are expected upon increasing the polarity of solution for interconversion of 1a and 4a.

Compound **4** is a minor component in the gas phase as indicated by the following low-intensity peaks in the mass spectra originated from fragmentation of the thiocyanate derivatives of type **4**: $\{m/z\ (\%):\ 1,\ 299\ (0.4)\ [C_3Ph_3SCN-CN]^+;\ 2,\ 329\ (0.5)\ [C_3(4-MeOC_6H_4)Ph_2SCN-CN]^+\}.$

Thus, on the basis of the experimental study of the rearrangements of 1 and 2 and theoretical modelling of this reaction it may be concluded that the migration of the

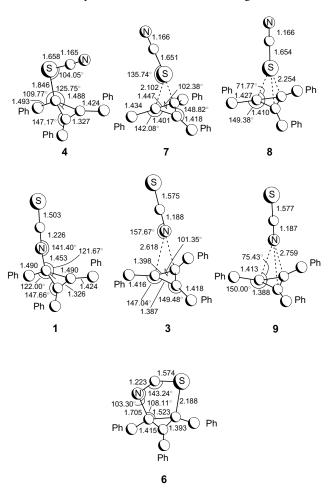


Figure 2 Geometric characteristics of the ground state structures 1a, 4a (R = Ph) and transition state structures 3, 6, 7 (R = Ph) and structures 8 and 9 (R = Ph) corresponding to the top of the hill on the PESs calculated by the PM3 method. The bond lengths are given in \mathring{A} .

isothiocyanate group in 3-(1,2,3-triphenylcyclopropenyl)isothiocyanate **1** and the 4-methoxyphenyl derivative **2** occurs in polar solution via a dissociation-recombination mechanism with the intermediacy of tight ion pairs. However, in the gasphase, all three mechanisms could be competitive.

G. A. Dushenko, N. Hakam and A. Zschunke thank the Deutsche Forschungsgemeinschaft for financial support in carring out the NMR study and organic synthesis. I. E. Mikhailov, I. V. Dorogan, R. M. Minyaev and V. I. Minkin acknowledge the Russian Foundation for Basic Research for financial support.

References

- R. Breslow, G. Ryan and J. T. Groves, J. Am. Chem. Soc., 1970, 92, 988.
- 2 G. L. Closs and A. N. Harrison, J. Org. Chem., 1972, 37, 1051.
- 3 B. Coleman, N. D. Conrad, M. W. Baum and M. Jones, J. Am. Chem. Soc., 1979, 101, 7743.
- 4 A. Padwa and T. J. Blacklock, J. Am. Chem. Soc., 1978, 100, 1321.

- 5 A. Padwa, D. M. Cordova and M. J. Pulwer, *J. Org. Chem.*, 1991, **56**, 4747.
- 6 I. E. Mikhailov, G. A. Dushenko, I. V. Dorogan, R. M. Minyaev, V. V. Negrebetskii, A. Zschunke and V. I. Minkin, *Mendeleev Commun.*, 1994, 9.
- J. Gonda, P. Kristian and I. Danihel, Z. Chem., 1983, 18.
- 8 F. Hoffer, B. Schrader and A. Krebs, Z. Naturforsch., Teil A, 1969, 24, 1617.
- 9 D. H. Williams and I. Fleming, Spectroskopische Methoden in der organischen Chemie, G. Tieme Verlag, Stuttgart, 1971.
- 10 M. Feigel, H. Kessler and A. Walter, Chem. Ber., 1978, 111, 2947.
- 11 M. Feigel, H. Kessler, D. Leibfritz and A. Walter, J. Am. Chem. Soc., 1979, 101, 1943.
- 12 B. E. Mann, in *Comprehensive Organometallic Chemistry*, eds. G. Wilkinson, A. G. F. Stone and W. E. Abel, Pergamon Press, New York, 1982, vol. 3, ch. 20, p. 90.
- 13 J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209.
- 14 S. Miertus, E. Scrocco and J. Tomasi, *Chem. Phys.*, 1981, 55, 117.

Received: Moscow, 27th March 1995 Cambridge, 7th June 1995; Com. 5/02241J